Li₈MgSi₆, a Novel Zintl Compound Containing Quasi-aromatic Si₅ Rings

R. NESPER, J. CURDA, AND H. G. VON SCHNERING

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80, FRG

Received August 26, 1985

Li₈MgSi₆ is the compound with the highest silicon content in the ternary system Li/Mg/Si. The gray compound forms columnlike crystals with metallic lustre and is very sensitive to moisture. It reacts spontaneously with water to silanes and amorphous silicon. Li₈MgSi₆ is a diamagnetic semiconductor with $E_g = 0.72 \text{ eV}$, $\rho(292 \text{ K}) = 1.3 \times 10^3 \Omega \text{ cm}^{-1}$. The compound is monoclinic and crystallizes in space group $P2_1/m$, a = 12.701, b = 4.347, c = 10.507 Å, $\beta = 107.58^\circ$, Z = 2. The structure of Li₈MgSi₆ contains isolated silicon atoms and planar five-membered Si₅ rings which form $\frac{1}{2}[\text{LiSi}_5]$ sandwich stacks. Semiempirical SCF calculations are in accordance with the physical properties and support a description of the five-membered silicon rings as quasi-aromatic 26 electron systems. A generalization of the electron counting rules of Zintl and Klemm is proposed. A remark on the ambiguous Li₁₁Ge₆ is given. @ 1986 Academic Press, Inc.

1. Introduction

Recent investigation of the lithium-silicon(1) and lithium-germanium (2, 3) systems reveal apparent similarities between the binary phases, e.g., $M_{12}X_7$ (4), $M_{14}X_6$ (1), $M_{21}X_5$ (5) with M = Li, X = Si, Ge,although there are some germanides to which corresponding silicides do not exist, e.g., Li₇Ge₁₂ (3), LiGe (5), Li₁₅Ge₄ (6). Especially the semimetal rich compounds are very interesting with respect to their chemical and physical properties and for an understanding of bonding in semimetal clusters and frameworks. Mixed silicide germanides of the type $Li_{12}(Si,Ge)_7$ and Li₁₄(Si,Ge)₆ have been prepared and analyzed and will be reported elsewhere (7). The corresponding silicon compounds of Li₇Ge₁₂ and LiGe types have not been obtained. We then have focused our interest

on the replacement of lithium by magnesium, expecting a stabilization of other possible structures by the higher charged Mg atoms. The full investigation of the ternary Li-Mg-Si system will be published elsewhere (8). We report here the silicon richest compound Li₈MgSi₆ which contains the planar quasi-aromatic $[Si_5]^{6-}$ ring in the same multidecker- π -complex arrangement as in Li₁₂Si₇. Furthermore there is a striking similarity to the structure of Li₁₁Ge₆ reported earlier (9).

2. Experimental

The ternary system Li-Mg-Si has been scanned around the pseudobinary sections by chemical synthesis and coulometric titration (δ). The preparations have been performed in boron nitride crucibles which were welded in niobium ampoules. The ampoules were heated in a closed quartz apparatus under argon atmosphere.

Li₈MgSi₆ is prepared from stoichiometric amounts of the pure elements [3N silicon (Ventron); 3N lithium (Ventron); magnesium 99.5% (Merck)] using a slight excess (5 atom %) of lithium. The sample is heated up to 1320 K for 1 hr, kept at 1270 K for 15-17 hr and cooled down to room temperature within 10 hr. Li₈MgSi₆ crystallizes as gray columnlike crystals of metallic luster. The compound reacts spontaneously with water and acids. The reactivity is comparable to that of Li₁₂Si₇, it burns immediately on contact with water and air. A chemical analysis was performed using the atomic emission method (ICP, Appl. Res. Lab) on a sample containing additional silicon. In selected crystals the ratio of Li: Mg was determined to be 8.5(7):1.

3. Physical Properties

The electrical conductivity of Li₈MgSi₆ was measured by a two-point method from

TABLE I

Li₈MgSi₆; Crystal Data, Data Collection, and Structure Determination

Formula, molecular weight	Li ₈ MgSi ₆ , 248.34 amu
Lattice constants	a = 12.701(2), b = 4.347(1), c =
	$10.507(2)$ Å, $\beta = 107.58(1)^{\circ}$
Temperature	296 K
Space group, Z	$P2_1/m-C_{2h}^2$ (Nr. 11), $Z = 2$
Volume, d_x	553.0 Å ³ , 1.491(1) g/cm ³
Crystal dimensions	$0.1 \times 0.1 \times 0.1$ mm
λ, μ (Mo Kα ₁)	0.71069 Å, 8.13 cm ⁻¹
Measuring instrument	SYNTEX P1 four-circle diffractometer
	graphite monochromator, scintillation
	counter
Measuring range	$3.5^\circ \le 2\theta \le 55^\circ, \omega$ scan
Measuring speed	$3.5 \le v \le 29.3 \text{ deg/min}$
Reflections N(hkl)	1214, unique 1172, 1162 with $I > 3\sigma(I)$
Absorption correction	ψ scan, 11 hkl, 10° increment
Structure solution	Direct methods (SHELXTL), 172 E's.
	The best solution gave the correct
	positions of all Si atoms. The Li atoms
	and the Mg positions were detected in
	subsequent Fourier synthesis.
Refinement	Full matrix least-squares method, 130 variables
Weighting scheme	$1/\sigma^2$
R(iso), R(aniso)	0.035, 0.021
Weighted	0.038, 0.022

TABLE II

Li ₈ MgSi ₆ ; Atomic Positional Parameters,
Equiisotropic (Si1–Li8) and Isotropic
TEMPERATURE FACTORS [pm ²] (Mg11–Mg18) AND
SITE OCCUPATION FACTORS (SOF) (STANDARD
DEVIATIONS)

Atom	x	у	z	U	SOF	
Sil	0.66091(4)		0.00979(5)	157(2)	1	
Si2	0.65567(4)	ł	0.23190(5)	148(2)	1	
Si3	0.84075(4)	ł	0.37706(5)	153(2)	1	
Si4	0.95736(5)	ŧ	0.23917(5)	149(2)	1	
Si5	0.84860(4)	1	1.01471(5)	152(2)	1	
Si6	0.34404(5)	ł	0.38244(5)	169(2)	1	
Lil	0.4424(3)	ł	0.9008(4)	228(11)	1	
Li2	0.2938(4)	ł	0.6167(4)	317(14)	1	
Li3	0.0275(4)	ł	0.6005(4)	287(13)	1	
Li4	0.0017(3)	ł	0.8899(4)	232(12)	1	
Li5	0.2113(3)	ł	0.8448(4)	249(12)	1	
Li6	0.4230(4)	ł	0.1688(5)	418(17)	1	
Li7	0.1693(5)	ł	0.1540(5)	464(17)	1	
Li8	0.8521(5)	0.616(3)	0.6011(6)	792(46)	0.5	
Mg11	0.5669(2)	ł	0.4591(2)	262(7)	0.422(8)	
Mg12	0.548(1)	ł	0.525(1)	203(45)	0.06(1)	
Mg13	0.512(2)	ł	0.601(3)	437(128)	0.04(2)	
Mg14	0.490(1)	0.100(5)	0.634(2)	282(66)	0.04(1)	
Mg15	0.643(2)	ł	0.751(1)	345(54)	0.07(1)	
Mg16	0.7028(8)	ł	0.7669(7)	317(27)	0.13(1)	
Mg17	0.7950(9)	ł	0.609(1)	560(39)	0.11(1)	
Mg18	0.686(2)	ł	0.509(2)	205(75)	0.03(1)	

295 to 1070 K with a pressed polycrystalline sample. Above 825 K the compound decomposes under loss of lithium. Therefore the bandgap was determined in the range up to 550 K. Li₈MgSi₆ is a semiconductor with a band gap of $E_g = 0.72$ eV which is slightly higher than that of the similar but more electron rich Li₁₂Si₇ ($E_g = 0.67$ eV). The electrical resistivity changes from $\rho(295 \text{ K})$ = $1.3 \cdot 10^3 \Omega \text{ cm}^{-1}$ to $\rho(550 \text{ K}) = 1.1 \cdot 10^5 \Omega \text{ cm}^{-1}$.

4. Crystal Structure Determination

Crystal data and details of the structure determination are listed in Table I. Tables II and III contain the atomic positional parameters, equiisotropic, isotropic, and anisotropic temperature factors together with the site occupation factors. The interatomic distances are collected in Table IV.

The Mg atom is found to be distributed on split positions in a circular area around

Li₈MgSi₆; Anisotropic Temperatures Tensor Coefficients [pm²] for Silicon and Lithium Atoms (Standard Deviations)

Atom	v_{11}	U ₂₂	U ₃₃	<i>U</i> 12	U_{13}	U ₂₃
Sil	147(3)	163(3)	156(3)	0	38(2)	0
Si2	146(3)	130(3)	173(3)	0	55(2)	0
Si3	148(3)	178(3)	143(3)	0	57(2)	0
Si4	160(3)	135(3)	168(3)	0	73(2)	0
Si5	166(3)	157(3)	152(3)	0	79(2)	0
Si6	192(3)	178(3)	159(3)	0	87(2)	0
Lil	224(18)	164(18)	278(18)	0	50(15)	0
Li2	480(26)	250(21)	260(19)	0	171(18)	0
Li3	372(22)	178(19)	271(18)	0	39(17)	0
Li4	268(19)	196(19)	280(18)	0	157(16)	0
Li5	204(18)	221(19)	344(20)	0	117(16)	0
Li6	613(32)	363(26)	387(23)	0	316(23)	0
Li7	564(30)	368(26)	326(22)	0	-67(21)	0
Li8	271(28)	1635(128)	395(31)	332(46)	~10(24)	-423(49

Note. The coefficients are defined for $\exp[-2\pi^2(U_{11}h \cdot a^{*2} + \cdots + 2U_{12}h \cdot ka^*b^* + \cdots)].$

 $x, \frac{1}{4}, z$ (x = 0.66; z = 0.62) with a radius of R= 160 pm (Table II). The main electron density is concentrated at the position Mg11 and corresponds to 0.42 Mg. This cannot be attributed to lithium (1.70 Li). The SOFs of the positions Mg11 to Mg18 sum up to unity within the standard deviations and confirm together with the analytical results and theoretical considerations the composition Li₈MgSi₆ (Section 6).

The anisotropic temperature factors (Table II) for the silicon and lithium atoms do not show extraordinary coefficients except for Li8. This atom is obviously affected by the local distribution of the magnesium atoms in the mirror plane $(x, \frac{1}{4}, z)$. Li8 occupies a pair of split positions with respect to the mirror plane and shows in addition a high coefficient U_{22} (Table II). In the Fourier synthesis (Fig. 1) small residual electron density maxima between the silicon atoms in the five-membered ring can possibly be attributed to valence electron densities along the Si-Si bonds. We will not discuss these effects here, because the data set does not include high angular data and does therefore not allow for an profound X-X electron density investigation.

5. Description of the Structure

The crystal structure contains planar Si₅ rings and isolated Si atoms Si6 (Figs. 2 and 3). The Sis rings are ecliptically stacked along [010] having Li atoms (Li1) inserted between adjacent rings. This is in fact an infinite sandwich complex $\frac{1}{\infty}$ [LiSi₅] which had been found already in $Li_{12}Si_7(4)$ and in $Li_{11}Ge_6$ (9). The five-membered Si₅ rings of the piles are coordinated by six further Li atoms (Li1-Li7) which are located in the plane of the sandwiched Li atoms (Li5) and form a large distorted six-membered ring (Figs. 2 and 3). The isolated Si atom Si6 lies in the plane of the five-membered Si5 rings and is coordinated by Mg and Li atoms (Table IV, Fig. 2). Si6 separates the $\frac{1}{\alpha}$ [LiSis] piles and is coordinated by the outer Li atoms of the piles and the Mg atoms. From the structures with L^{1} [LiSi₅] piles known so far, there is an indication that additional

FIG. 1. Li₈MgSi₆; Fourier map of the $(x, \frac{1}{2}, z)$ plane (distorted). The magnesium atom is distributed statistically over several positions in a nearly circular area centered at + with a pronounced maximum at the Mg11 site. Probable repulsive contacts Li-Li and Li-Mg are indicated by arrows.

Li₈MgSi₆; Selected Interatomic Distances [pm] and Angles [degrees] (Standard Deviations)

-											
Sil	- S12	235.47 (9)	S16	- Ma18	253.7(13)	Li3	- S13	270.9(3)	L18	~ LI8	116.6(23)
••••	- S15	236.87 (8)		- Ma18	253.7(13)	- · ·	- SI3	270.9(3)		~ MG17	176.1 (12)
	- Ma15	266.3(15)		- Ma12	257.1 (11)		- 514	272.1 (3)		~ 112	253.9(7)
	- 1 1	266.3(4)		- Ma12	259.7 (6)		- 514	272.1 (3)		- 514	256.2 (6)
	- Ma16	275.9(9)		- Ma12	259.7 (6)		- 1.18	274.0 (9)		- Ma18	258.8(19)
	- 1.1	284.2(3)		- 1.9	261.4(7)		- 1.9	274.0(9)		~ Cif	
	- 1.1	204.2(3)		_ 1.9	261 4(7)		- 513	279 9 (4)		- 310	201.4(7)
		204.2(3)		- LIG	201.4(7)		~ 313			- L17	273.1(9)
	- LIO	283.9(3)		- 11915	201.7 (9)		- LIS	290.1(5)		- LI3	2/4.0(9)
	- 110	283.9(3)		- 1915	201+7 (9)		- 113	290.3(3)		- 513	280.8(9)
	- 115	286-3(2)		- mg13	201+9(27)		- LI3	290.3(5)		- MG17	285+8(12)
	- LIS	286 - 3 (2)		- Mg16	264+1 (4)		- MG17	298-2(13)			
		_		- M ₈ 16	264 - 1 (4)		_		Mg 1 1	- \$16	269-9(2)
S12	- Sil	235 . 47 (9)		- Mg14	265.2 (20)	L14	- SI5	265.3(5)		- S16	276.3(1)
	- SI3	238.46(7)		- Mg14	265.2(20)		- SI4	269.5(3)		- SI6	276.3(1)
	- L12	265.5(2)		- Məfi	269.9(2)		- SI4	269.5(3)		- SI2	293.2(3)
	- L12	265.5(2)		- L16	272.1 (6)		- L15	284+2 (6)			
	- LII	267 - 8 (2)		- L12	272.3(5)		- SI5	286 . 2 (2)	Mg12	- SI6	257 . 1 (11)
	- 611	267.8(2)		- L17	273.3(4)		- S15	286.2(2)	-	- S16	259.7 (6)
	- Ma18	281.6(23)		- Mali	276.3(1)		- L17	294.3(5)		- S16	259.7 (6)
	- L16	282.7 (5)		- Mall	276.3(1)						
	- Mell	293.2(3)		- Ma14	280.5(15)	LIS	- Lil	281.5(6)	Mal 3	- S16	261.9(27)
				- Ma14	280.5(15)		- 1.4	284.2(6)		- 516	281.3(20)
F 1 3	- 614	236 42 (9)		- M-13	281 3 (20)		- 5.5	285.7(3)		- 516	281 . 3 (20)
315	- 0.0	230.42(3)		- M.13	201-3(20)		- 515	205 7 (3)		510	20110(20)
	- 312	230.40(/)		- 1613	281 - 3 (20)		- 515	283.7 (3)	M . 1.4		26E 2 (20)
	- 1617	267.1(12)		- 1617	281.9(7)		- 511	286.3(2)	⊡g 1 4	- 510	265.2(20)
	- LI3	270.9(3)		- MG17	281 - 9 (7)		- 511	286 - 3 (2)		- 516	280.5(15)
	- LI3	270.9(3)		. .			- L12	289-1 (7)		- \$12	304-8(21)
	- Mg18	272.7 (27)	LII	- \$11	266.3(4)		- L13	290.1 (5)			
	- L12	277.8(3)		- S12	267 - 8 (2)		- Si4	299.1 (3)	Mg 1 5	- SI6	261 - 7 (9)
	- L12	277.8(3)		- S12	267 - 8 (2)		- S14	299-1 (3)		- SI6	261 - 7 (9)
	- L13	278.8(4)		- LI5	281 - 5 (6)					- SI1	266.3(15)
	- LI8	280.8(9)		- Sil	284-2 (3)	L16	- Mg14	254.2(19)		- SI5	318-6(15)
	- LI8	280.8(9)		- Sil	284.2 (3)		- Mg14	254.2(19)			
				- L16	290.0(7)		- Mg15	256.2(11)	Mg16	- S16	264-1 (4)
SI4	- SI5	234.57 (8)		- L16	298.9(5)		- Me15	256.2(11)	•	- S16	264-1 (4)
-	- SI3	236.42 (9)		- L16	298.9(5)		- Si6	272.1 (6)		- S15	270.1 (7)
	- 1.8	256.2(6)					- S12	282.7 (5)		- Si1	275.9(9)
	- 1 (8	256.2(6)	1.12	- Ma14	252.4(19)		- Si1	285.9(3)			
	- 1 14	269.5(3)		- Ma14	252.4(19)		- 511	285.9(3)	MG17	- 513	267.1(12)
	- 1.4	269 5 (3)		_ 1.9	252 4 (13)		- M-16	289.5(8)		- 516	281.9(7)
	- 614	209.3(3)		- 1.10	253,9(7)		- Hg10	20315(0)		- 516	291-9(7)
	- LIS	2/2.1(3)		- LID	255.9(7)		- 11910	203.3(0)		- 310	201.3(7)
	- 113	2/2.1(3)		- 11918	239.3(14)			290.0(7)	M. 10		267 7 (17)
	- LIS	299.1(3)		- 11618	259.5(14)		- 111	298.9(5)	rig i O	- 516	253.7 (13)
	- LIS	299-1 (3)		- 512	265.5(2)		- [1]	298 9 (5)		- 510	253.7 (13)
				- \$12	265.5(2)					- 513	272.7 (27)
S15	- SI4	234.57 (8)		- SI6	272.3(5)	L17	- Mg16	269.1(6)			
	- Sil	236-87 (8)		- SI3	277.8(3)		- Mg16	269.1 (6)	k -	1	
	- L14	265.3(5)		- SIJ	277.8(3)		- LIB	273.1 (9)	n n	gres	
	- Mg16	270.1 (7)		- Mg13	282.4 (34)		- L18	273.1 (9)		•	
	- L17	277.0(3)		- LIS	289.1 (7)		- S16	273.3(4)	Si 1	- S12	- SI3 108.44(3)
	- L17	277.0(3)					- S15	277.0(3)	5.4	- 513	- SI2 106.69(%)
	- L15	285.7 (3)					- S15	277.0(3)	515	- 514	- SI3 109.17 (%)
	- L15	285.7 (3)					- L14	294.3(5)	S14	- 515	- Sit 107.77(3)
	- L 14	286.2(2)							513	- 513	- 515 107 67 (3)
	- 114	286.2(2)							312	- 311	
	214										

Note. The distances are displayed up to 300 pm (Si and Li: all neighbors, Mg: silicon coordination). The angles are listed only for the Si₅ ring.

units as Si^{4-} or Si_4^{12-} are necessary to provide for a suitable packing of the fivefold piles. This may be the reason that com-

pounds like Li_6Si_5 and Li_6Ge_5 have not been observed.

The Si-Si bond distances in Li₈MgSi₆

FIG. 2. Perspective view of the Li_8MgSi_6 structure (a) along [010] and (b) perpendicular to (100) (Si: big, Mg: black, Li: small circles).

range from 234.6 to 238.5 pm with a mean value of 236.4 pm and are very similar to those observed in the corresponding Si₅ cluster in Li₁₂Si₇ (235.6, 237.9, 236.7 pm). However, the comparison of the two equivalent ring systems shows differences which are probably due to packing effects in the crystal structures. This seems especially true for the longer distance of about 238-239 pm which occurs in the region of closest approach of the piles. Similar arguments hold for the angles in the Si₅ ring which do not differ very much and show values around the ideal angle of $3\pi/5 = 108^\circ$ for a planar five-membered ring. The local coordination of the Si atoms in the Si₅ ring is completed either by 6 or 7 metal atoms giving rise to slightly different mean distances so that a comparable overall coordination results for all ring atoms (Fig. 3).

The isolated silicon Si6 is surrounded by 3 Mg and 4 Li atoms with very similar overall coordination number. Nevertheless Si6 and Mg form a building unit, which has the shape of a puckered ladder expanding along [010].

The Li atoms as well as the main Mg position (Mg11) are coordinated by 5 Si atoms except Li5 which is "sandwiched" between two Si₅ rings having 10 neighboring Si atoms. The Mg atom is distributed around a circular area which is perpendicular to and centered at the line Si6–Si6′ along [010] (Fig. 1). The central position in 0.66, $\frac{1}{4}$, 0.62 (Fig. 1) has too short distances to the Si6 atoms (217 pm) and, therefore, cannot be occupied. On a circle with a radius of about R = 160 pm around that point, a suitable Mg–Si distance is reached allowing for additional contacts to the silicon at-

FIG. 3. One-dimensional $\frac{1}{n}[\text{LiSi}_3]$ piles (a) in Li₈MgSi₆, (b) in Li₁₂Si₇, and (c) in "Li₁₁Ge₆" perpendicular to the mean plane, including the outer metal coordination. The geometry of the central part does not change significantly while the outer coordination changes slightly. Bond length Si–Si and Ge–Ge, respectively, in pm.

oms of the five-membered ring. The other surrounding Si atoms, however, favor certain positions on that circle which gives rise to 3 pronounced maxima in that region with decreasing electron density, e.g., Mg11, Mg16, and Mg17. The other Mg positions occur in the difference Fourier map and have been used to collect the total electron density as far as possible. We interpret these small density regions as possible positions of moving or statistically distributed Mg atoms, which are, however, most probably found at the Mg11 site. All these positions have digestible distances to other atoms and are well coordinated by silicon atoms. This was found to be consistent with very similar coordination spheres for the different positions determined by the effective coordination number ECON (10) and bond order method (18) calculations.

The distribution of Li8 and its high U_{22} coefficient are due to a relaxation along the *b* axis with respect to the local Mg disorder. Li8 does not change its coordination considerably in this way, but avoids the Mg atom. Similar but weaker interactions occur between Li7-Li8, Li7-Li6-Mg11, and Li2-Mg13 and give rise to slightly higher temperature factor components along corresponding directions (see arrows in Fig. 1).

6. Discussion

The structure of Li_8MgSi_6 gives once more the opportunity to demonstrate the validity of the generalized Zintl-Klemm concept. This means that multicenter bonds, multiple bonds, and aromatic bonding as well as the occupancy of antibonding states can well be considered for the analysis of the correlation between electron count and structure. It is furthermore not important whether this is applied to isolated clusters, one-, two-, and three-dimensional structures (or partial structures) or to localized and delocalized electronic states (bands). In general this is quite common for the elements of the first and second period, but hardly taken into account for the higher ones up to now. We think that there is a strong indication to consider these effects for the higher elements, too, on a much broader basis now.

A transfer of electrons into antibonding states does not necessarily lead to bond breaks, if the antibonding state can be stabilized by perturbation arising from the environment of the cluster. The electronic state in question should fulfill the requirements of a so-called frontier orbital (20). This was shown, e.g., for the 28e Si₄ star in Li₁₂Si₇ (13). Li₈MgSi₆ fulfills the electronic rules of Zintl and Klemm (11) and Mooser and Pearson (12) indeed only if the planar Si_5 ring is assumed to be a quasi-aromatic 26e system. The formal electron distribution can be rationalized as (Li⁺)₈Mg²⁺[Si₅]⁶⁻ Si⁴⁻. These formal charges are only used to count the correct number of valence electrons being in crystal orbital states with dominant character of the corresponding atom or cluster. This description is in complete agreement with the physical properties and is supported by recent band structure calculations for $Li_{12}Si_7$ (13) and Li_8 $MgSi_{6}$ (14) on the basis of a one-dimensional crystal orbital SCF calculation scheme (15, 16). These investigations confirm that in both compounds the $L[LiSi_5]$ piles represent 26e systems per repeat unit independent of variations of the outer Li coordination $(^{1}_{\alpha}[Li_{4}LiSi_{5}]^{-}, ^{1}_{\alpha}[Li_{5}LiSi_{5}]^{0},$ and $\frac{1}{2}[Li_6LiSi_5]^+$). It should be emphasized that the Si⁶⁻ units present here are the first proved (deprotonized) pentasilacyclopentadienyl systems. The occurrence of an isolated Si atom of the formal charge 4fits the normal description in terms of the electronic counting rules without any difficulty.

The comparison of the structures of $Li_{12}Si_7$ and Li_8MgSi_6 shows that the translation period along the ${}^{1}_{\omega}[LiSi_5]$ piles is nearly

unaffected by the composition. In the case of Li₈MgSi₆ this gives rise to the unacceptable short distance between the Si6 position and the "ideal" position of Mg at 0.66, $\frac{1}{4}$, 0.62. Therefore, the splitting of the Mg over several positions around 0.66, $\frac{1}{4}$, 0.62 follows from the fixed length of the LiSi₅ piles. This displacement of the Mg atoms affects of course the adjacent Li8 sites.

Compounds like Li₆Si₅ and Li₆Ge₅ with the pure sandwich pile have not been observed. The reason may be that a dense packing of such piles might be unfavorable. In Li₁₂Si₇ and Li₈MgSi₆ the piles are separated from each other by different structural units like the Si₄ star and the $^{1}_{\infty}$ [MgSi] ladder, respectively. It should be pointed out that in both cases the additional units contain the higher charged atoms $(Li_{12}^{12+}Si_{4}^{12-} \text{ in } Li_{12}Si_7 \text{ and } Li_{2}^{2+}Mg^{2+}Si^{4-} \text{ in }$ Li₈MgSi₆), a picture which is strongly supported by the SCF INDO results (13, 14). Although the separation of the Li₁₂Si₇ structure into the quoted units might seem somewhat arbitrary, the division of the Li₈MgSi₆ structure is obvious and justifies the description of $Li_{12}Si_7$ (13).

The comparison of the molar volumes (MV) of $Li_{12}Si_7$, Li_8MgSi_6 , " $Li_{11}Ge_6$," Li₁₄Si₆, Li₁₃Si₄, and Li₂₁Si₅ gives a further interesting result. From the MV's for charged Si^{x-} anions can be calculated by assuming MV (Li⁺) = $2 \text{ cm}^3 \text{ mole}^{-1}$ and MV $(Mg^{2+}) = 2 \text{ cm}^3 \text{ mole}^{-1}$ (19). The corresponding volumes for the uncharged Si atoms are yielded by substraction of the atomic volumes of lithium $(8.5 \text{ cm}^3 \text{ mole}^{-1})$ and magnesium (14 cm^3 mole⁻¹) from the molar volumes of the corresponding compounds. There is a general trend of increasing volume with the amount of charge on silicon, as expected in the ionic description: MV $(Si^{1.71-}) = 22.8$, MV $(Si^{1.67-}) = 24.8$, MV (Ge^{1.67–}) = 25.7 MV (Si^{2.33}) = 26.3, MV $(Si^{3.25-}) = 34.0, MV (Si^{4.2-}) = 40.9 cm^3$ mole⁻¹ calculated from Li₁₂Si₇, Li₈MgSi₆, "Li₈MgGe₆" (see below), Li₁₄Si₆, Li₁₃Si₄,

Li₂₁Si₅, respectively. Even in the intermetallic type description, the MV (Si⁰, Ge⁰) values do increase slightly in this series: 11.6, 14.1, 15.0 (Li11Ge6), 11.2, 12.9, 13.6 cm^3 mole⁻¹. In both cases the volume for LisMgSic is apparently higher as expected. but the magnitude of these variations is not extraordinary in the family of silicides and germanides of alkali and earth alkaline metals. Variations are obviously correlated to special cluster types and the arrangement of these units in the solid state. The higher volume of Li₈MgSi₈ relative to $Li_{12}Si_7$ reflects the observed disorder of magnesium and the corresponding volume requirements of the local vacancies.

7. Remark on the Existence of Li₁₁Ge₆

The germanide $Li_{11}Ge_6$ was published some years ago (9). Our recent reinvestigation of the Li–Ge system did not give any indication for a binary compound of this composition (2). The striking similarity with the structure of Li₈MgSi₆ (planar Ge₅ rings, ecliptical $\frac{1}{\infty}$ [LiGe₅] piles, isolated Ge atoms, group-subgroup relationship: "Li₁₁Ge₆"-Cmcm, Li₈MgSi₆- $P2_1/m$) supports the suspicion that this germanide is in fact a ternary compound. There is evidence even from the crystallographic data of the authors (17) that the real composition is Li₈MgGe₆ with a disordered Mg atom like in Li₈MgSi₆. The temperature factor of Li1 in "Li₁₁Ge₆" (17) is vanishingly small (U_{iso} = 0.002 Å²) while the other atoms show normal values. The coordination of Li1 is outstanding, it has only two Ge neighbors (253 pm) while the other Li atoms are coordinated by 4, 5, or 10 (Li5) Ge atoms. To fit the Zintl-Klemm rule, Li1 has to be partly occupied by Mg (\sim 80%) and one Li atom has to be replaced by Mg with $\sim 20\%$ probability (3/14). There is no other position which shows extraordinary properties so that with the reported X-ray data (17) one can only guess where the rest (20%) of the

magnesium may be distributed. From the comparison of the outer metal coordination of the three known $\frac{1}{\omega}[LiX_5]$ piles (X = Si, Ge) one would guess that in "Li₁₁Ge₆" the positions Li3, Li4, Li5, and Li6 are probably occupied by Li atoms while one Mg and two Li per formula unit might be distributed over the position Li1, Li2, and Li7. The molar volumes of "Li₁₁Ge₆" (172.3 cm³ · mol^{-1}) and Li_8MgSi_6 (166.5 cm³ · mol⁻¹) differ only by 5.7 $\text{cm}^3 \cdot \text{mol}^{-1}$ which is only 63% of the difference of the atomic volumes for 6 Ge and 6 Si (9 cm³ \cdot mol⁻¹). It is not very probable that "Li₁₁Ge₆" should have two more atoms per formula unit. On the basis of these arguments, we believe that its real composition is Li₈MgGe₆. It is interesting to note that the short stacking axis does not change as much (0.8%) as expected from the volume change (1.2%) for the two compounds.

Acknowledgments

We thank Dr. W. Bauhofer for the measurements of the electrical conductivity, Dr. K. Peters for the measurement of the X-ray data, and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

 H. G. V. SCHNERING, R. NESPER, K.-F. TEBBE, AND J. CURDA, Z. Metallkde. 71, 357 (1980).

- A. GRÜTTNER, Dissertation, Universität Stuttgart (1982).
- 3. A. GRÜTTNER, R. NESPER, AND H. G. V. SCH-NERING, Intern. Union of Cryst., 12th Intern. Congr., Ottawa, Canada; Acta Crystallogr. Sect. A 37, C161 (1981).
- H. G. V. SCHNERING, R. NESPER, K.-F. TEBBE, AND J. CURDA, Angew. Chem. 92, 1070 (1980); Angew. Chem. Int. Ed. Engl. 19, 1033 (1980).
- R. NESPER, H. G. V. SCHNERING, AND J. CURDA, Annual Report, Max-Planck-Institut f
 ür Festkörperforschung, Stuttgart (1983).
- Q. JOHNSON, G. S. SMITH, AND D. WOOD, Acta Crystallogr. 18, 131 (1965).
- R. NESPER, J. CURDA, AND H. G. V. SCHNERING, to be published.
- 8. R. NESPER, H. G. V. SCHNERING, AND J. CURDA, to be published.
- 9. U. FRANK AND W. MÜLLER, Z. Naturforsch. 30B, 313 (1975).
- 10. R. HOPPE, Z. Kristallogr. 150, 23 (1979).
- E. ZINTL, Angew. Chem. 52, 1 (1939); W. KLEMM, "Festkörperprobleme," Vol. III, Vieweg, Braunschweig (1963).
- E. MOOSER AND W. B. PEARSON, Prog. Semicond. 5, 103 (1960).
- M. C. BÖHM, R. RAMIREZ, R. NESPER, AND H. G.
 V. SCHNERING, *Phys. Rev.* B30, 4870 (1984).
- 14. R. RAMIREZ, R. NESPER, H. G. V. SCHNERING, AND M. C. BÖHM, Chem. Phys. 95, 17 (1985).
- 15. М. С. Вöнм AND R. GLEITER, Theor. Chim. Acta 59, 127 (1979).
- 16. М. С. Вöнм, Theor. Chim. Acta 62, 351 (1983).
- 17. U. FRANCK, Dissertation, Universität Darmstadt (1976).
- 18. R. ALLMANN, Monatsh. Chem. 106, 779 (1975).
- H. BILZ, "Raumchemie der festen Stoffe," Verlag L. Voss, Leipzig (1934).
- 20. R. HOFFMANN, Les Prix Nobel 1981, Stockholm (1982), Almqvist & Wiksell.